

Fluglärmbericht

SEPTEMBER 2022

Unser Ziel: Fluglärm reduzieren

Der Betrieb eines Flughafens hat direkte Auswirkungen auf die Menschen, die in seiner Nachbarschaft wohnen: Sie hören die startenden und landenden Flugzeuge – und fühlen sich oft davon gestört. Daher bemüht sich der Flughafen Stuttgart, in Zusammenarbeit mit der Flugsicherung und den Airlines, den Fluglärm so weit wie möglich zu begrenzen. Dabei geht es nicht nur um die Finanzierung von Schallschutz für die meisten Betroffenen, sondern auch um eine effektive Entgeltpolitik: Für lautere Flugzeuge müssen die Airlines deutlich höhere Start- und Landeentgelte zahlen. Daher setzen sie immer mehr moderne geräuscharme Jets ein, die den durchschnittlichen Dauerschallpegel über die Jahre hinweg gesenkt haben. Das zeigen die Ergebnisse der Fluglärmmessanlage, die der Flughafen Stuttgart seit 1969 betreibt.

Lage der Außenmessstellen der Fluglärmmessanlage des Flughafens Stuttgart

Der baden-württembergische Landesairport war damit der erste deutsche Flughafen, der in seiner Nachbarschaft regelmäßig den Fluglärm aufzeichnete. Heute liegen die acht Außenmessstellen der Anlage in besiedelten Gebieten der Gemeinden Scharnhausen, Berkheim, Neuhausen, Bernhausen, Stetten, Steinenbronn, Echterdingen und Denkendorf.

Die Mikrofone, die den Schalldruck erfassen, sind auf Dachflächen angebracht: Hier werden die Flugzeuggeräusche am wenigsten durch andere Umgebungsgeräusche überlagert. Die Lage der Außenmessstellen ist durch unabhängige vereidigte Lärmsachverständige nach fachlichen Kriterien festgelegt worden. Für den Betrieb von Fluglärmmessanlagen und auch für die Auswertung der Messdaten gibt es normierte Vorgaben.

Seit der technischen Erneuerung der Fluglärmmessanlage im Jahre 1996 veröffentlicht die Flughafengesellschaft monatliche Fluglärmberichte. Wer sich dafür interessiert, welche Schallpegel der Luftverkehr an den verschiedenen Messstellen in der Umgebung des Flughafens verursacht, findet im Folgenden die Ergebnisse.

1. Zivile Flugbewegungen im September 2022

Monatliche zivile Flugbewegungen am Flughafen Stuttgart (Tabelle 1)

Flugbewegungen	insgesamt		Landung 07	Start 25 *1	Landung 25
1.) Strahltriebflugzeuge	7.589	1.276	1.153	2.523	2.637
2.) Propellerflugzeuge	1.017	215	221	297	284
3.) Hubschrauber	347	58	61	116	112
Summe 1 3.	8.953	1.549	1.435	2.936	3.033

^{*1} Start 07 = Start nach Osten
Landung 07 = Landung von Westen

Je leiser, desto günstiger

Durch lärmabhängige Start- und Landeentgelte schafft die Flughafen Stuttgart GmbH (FSG) den Airlines gezielte Anreize, möglichst geräuscharme Flugzeuge einzusetzen. Das Prinzip ist einfach: Leisere Flugzeuge zahlen weniger als Krachmacher. Da sich Überfluggeräusche von Luftfahrzeugen wegen technischen Fortschritts im Flugzeugbau und modifizierter Flugverfahren verändern, muss die Einordnung in Stuttgart verkehrender Flugzeugtypen in unterschiedliche Lärmkategorien regelmäßig überprüft werden. Seit 2002 berechnet die FSG die Entgelte nicht mehr anhand von Lärmzulassungswerten der Flugzeuge, sondern auf Basis gemessener, durchschnittlicher Überflugpegel. Seit 2014 ist der durch Überflüge verursachte Einzelereignis-Schalldruckpegel (SEL) maßgebend für die Zuordnung unterschiedlicher Flugzeugtypen in Lärmkategorien. Der Lärmereignispegel (SEL) bildet die Intensität sowie die Zeitdauer von Geräuschen ab und liefert bezogen auf eine Sekunde die gleiche Schallenergie wie das tatsächliche Überflugereignis über die gesamte Überschreitungszeit des Messschwellenpegels. Abhängig von diesen Werten werden die Flugzeuge zwölf unterschiedlichen Lärmkategorien zugeordnet. Tabelle 2 zeigt: Je lauter der Flugzeugtyp, desto höher ist der Festbetrag, der pro Start und pro Landung fällig ist.

Lärmbezogene Start- und Landeentgelte am Flughafen Stuttgart (Tabelle 2)

Lärmereignispegel SEL des Flugzeugtyps (gemittelt)	Lärmkategorie	Entgelt pro Start- und Landung
bis 76,9 dB(A)	1	25
77 dB(A) bis 78,5 dB(A)	2	30
78,6 dB(A) bis 80,1 dB(A)	3	60
80,2 dB(A) bis 81,7 dB(A)	4	90
81,8 dB(A) bis 83,3 dB(A)	5	120
83,4 dB(A) bis 84,9 dB(A)	6	150
85,0 dB(A) bis 86,5 dB(A)	7	180
86,6 dB(A) bis 88,1 dB(A)	8	300
88,2 dB(A) bis 89,7 dB(A)	9	500
89,8 dB(A) bis 91,3 dB(A)	10	700
91,4 dB(A) bis 92,9 dB(A)	11	900
93 dB(A) und höher	12	1400

 $\label{thm:continuous} \mbox{Die Gesamtflugbewegungen aus Tabelle 1 verteilen sich wie folgt auf die für den Flughafen Stuttgart geltenden Lärmkategorien:}$

Flugbewegungen nach Lärmkategorie (Tabelle 3)

Kategorie	1	2	3	4	5	6
Bewegungen	1.958	135	333	378	2.043	2.661
Kategorie	7	8	9	10	11	12
Bewegungen	1.373	30	42	0	0	0

^{*1} Start 25 = Start nach Westen
Landung 25 = Landung von Osten

2. Nachtflugbewegungen ziviler Strahlflugzeuge

Die Stuttgarter Nachtflugbeschränkung

Damit die Nachbarn im Schlaf möglichst wenig von Fluglärm gestört werden, gelten für den Flughafen Stuttgart Nachtflugbeschränkungen, die zu den strengsten in Deutschland gehören. Im Planfeststellungsbeschluss für den Ausbau aus dem Jahr 1987 ist festgelegt, dass zwischen 23.00 und 6.00 Uhr keine zivilen Strahlflugzeuge – also Jets – starten dürfen. Landungen solcher Flugzeuge sind zwischen 23.30 und 6.00 Uhr morgens nicht erlaubt. Ausgenommen von diesen Beschränkungen sind nur wenige Flugbewegungen, die klar definierte Bedingungen erfüllen müssen.

Zulässig sind während der betriebsbeschränkten Nachtstunden nur:

- Landungen verspäteter ziviler Strahlflugzeuge bis 24 Uhr, sofern deren planmäßige Ankunft vor 23.30 Uhr lag
- Starts und Landungen von Propellerflugzeugen und Hubschraubern (> 8,618 t müssen den Anforderungen des ICAO Annex 16, Kap. 4 und < 8,618 t des Kapitels 10 entsprechen)
- Starts und Landungen von militärischen Luftfahrzeugen
- Flüge im Nachtluftpostdienst der Deutschen Post AG (müssen den Anforderungen des ICAO Annex 16, Kap. 4 entsprechen)
- Not- und Ausweichlandungen
- Flüge im Einsatz für den Katastrophenschutz oder medizinische Hilfeleistung
- Vermessungsflüge zur Überprüfung flugsicherungstechnischer Anlagen
- Flüge mit Ausnahmegenehmigung durch die Luftaufsicht

Wie viele zivile Jets innerhalb der mit Nachtflugbeschränkungen belegten Zeiten am Flughafen aufgrund geltender Ausnahmeregelungen gestartet oder gelandet sind, zeigt die folgende Tabelle:

September 2022	mber 2022 Starts 23,00 - 6,00 Uhr		Flugbewegungen insgesamt
Gesamtzahl	46	112	158

davon Ausnahmeregelungen gemäß Planfeststellungsbeschluss

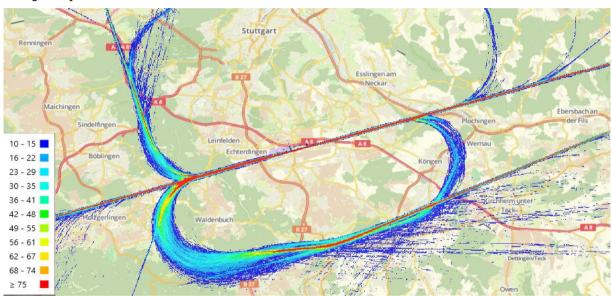
September 2022	Starts 23.00 - 6.00 Uhr	Landungen 23.30 - 6.00 Uhr	Flugbewegungen insgesamt
verspätete Landungen bis 24.00 Uhr		61	61
Nachtluftpostdienste	43	44	87
Not-/Ausweichflüge			0
Flüge im Katastrophenschutz oder medizinische Hilfeleistung	1	1	2
Vermessungsflüge für die Flugsicherung			0

Einzelausnahmegenehmigungen durch die Luftaufsichtsstelle

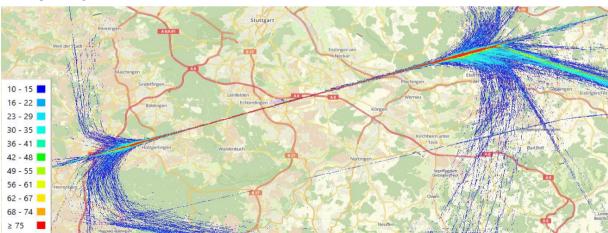
Nächtliche Starts und Landungen am Flughafen Stuttgart (Tabelle 4)

September 2022	Starts 23.00 - 6.00 Uhr	Landungen 23.30 - 6.00 Uhr	Flugbewegungen insgesamt
Einzel-Ausnahmegenehmigungen	2	6	8

3. Analyse der Überflugdichte


Die folgenden beiden Kartendarstellungen veranschaulichen die An- und Abflüge eines Monats am Flughafen Stuttgart. Quadratische Kacheln unterteilen dabei das gesamte Gebiet in ein gleichmäßiges Raster. Für jedes dieser Kacheln wird gezählt, wie oft ein Flugzeug darüber geflogen ist. Die Kacheln werden entsprechend dieser Summe eingefärbt und als farbiges Mosaik über die Landkarte gelegt.

Für den Betrachter bietet sich somit ein auf den ersten Blick anschauliches Bild der aktuellen Überflugsituation.


Die Angaben zur Überflughäufigkeit beziehen sich auf den Berichtszeitraum von einem Monat. Die Farbskala in Regenbogenfarben reicht von 10 bis über 75 Flugbewegungen. Kacheln mit weniger als 10 Flugbewegungen (eines Monats) werden nicht dargestellt. Kacheln ab 75 Flugbewegungen werden in rot dargestellt. Dazwischen liegen alle anderen Farben der Farbskala.

Die Überflugdichte lässt keine Rückschlüsse auf die Fluglärmsituation am Boden zu. Diese hängt von zahlreichen Einflussfaktoren ab, insbesondere von der Überflughöhe, die in den beiden Karten nicht dargestellt wird. Darüber hinaus spielen noch u.a. der Flugzeugtyp und das Flugverfahren eine Rolle.

Abflüge im September 2022

Landungen im September 2022

4. Dauerschallpegel durch Flugbewegungen in der Umgebung des Flughafens

4.1 Woher weiß die Anlage, ob es ein Flugzeug war?

Die Mikrofone der Außenmessstellen zeichnen rund um die Uhr alle Geräusche in der Umgebung auf. Sie werden als so genannter Schallpegel-Zeit-Verlauf im Rechner der Fluglärmmessanlage gespeichert. Von diesen Geräuschen gelten alle als potentielle Fluglärmereignisse, die in einem Zeitraum zwischen zehn und 90 Sekunden einen Maximalschallpegel (= der höchste Schalldruck eines einzelnen Fluglärmereignisses) von mehr als 60 dB(A) aufweisen. Um zu überprüfen, ob es sich bei diesen Schallereignissen tatsächlich um Geräusche des Luftverkehrs handelt, werden diese mit den Radarspuraufzeichnungen der Flugsicherung verglichen. Nur wenn sich gleichzeitig mit dem registrierten Geräusch ein Flugzeug im Einzugsbereich der Messstelle befindet, gilt der aufgezeichnete Schallpegel-Zeit-Verlauf als Fluglärmereignis.

4.2 Berechnung des Dauerschallpegels

Die Höhe des Schallpegels und die Dauer der registrierten Fluglärmereignisse unterscheiden sich von Überflug zu Überflug. Ausschlaggebend dafür ist eine Reihe von Gründen. Zu den wichtigsten zählen:

- Verschiedene Flugzeugmuster sind unterschiedlich geräuschintensiv.
- Die Entfernung zwischen Außenmessstelle und vorbei- oder überfliegendem Flugzeug kann sich unterscheiden.
- Umwelteinflüsse wie Wind, Luftschichtung, Temperatur und Luftfeuchtigkeit beeinflussen die Schallausbreitung.

Um die Messergebnisse vergleichbar zu machen, wird der **Dauerschallpegel (Leq) errechnet**. Dieser dient zur Beurteilung von Geräuschen, die innerhalb eines Zeitintervalls unterschiedlich hohe Schallpegel aufweisen oder durch Pausen unterbrochen sind. Die Pegelwerte verschiedener Zeiten werden hierbei zu einem Vergleichswert zusammengefasst, der sich zusammensetzt aus:

- der Intensität der Einzelschallereignisse,
- deren Häufigkeit
- und deren Dauer.

Die Berechnung der Dauerschallpegel und die Auswertung der Fluglärmaufzeichnungen erfolgen nach normierten Vorgaben.

Nach dem Fluglärmschutzgesetz werden die Dauerschallpegel für das Zeitintervall der sechs verkehrsreichsten Monate bestimmt. Um ein möglichst differenziertes Bild von den Flugzeuggeräuschen in der Umgebung des Flughafens Stuttgart zu vermitteln, stellt die Flughafengesellschaft in ihren Fluglärmberichten luftverkehrsbedingte Dauerschallpegel auch als Tageswerte dar.

4.3 Dauerschallpegel nach dem novellierten Fluglärmgesetz

Nach dem novellierten Fluglärmgesetz ist zwischen Dauerschallpegeln während der Tagzeit (6.00 bis 22.00 Uhr) und während der Nachtzeit (22.00 bis 6.00 Uhr) zu unterscheiden. Ermittelt werden die Dauerschallpegel nach dem so genannten Energieäquivalenzprinzip, d. h. mit einem Halbierungsparameter von q = 3. Das bedeutet praktisch:

Der Dauerschallpegel Leq(3) erhöht sich um 3 dB,

- wenn ein Überflug doppelt so lang gleich laut wahrgenommen wird
- oder wenn sich das Flugbewegungsaufkommen innerhalb eines Zeitintervalls bei gleich hohen und gleich langen Einzelschallereignissen verdoppelt.

Fluglärmdauerschallpegel Leq Tag nach dem novellierten Fluglärmschutzgesetz vom Juni 2007 während der Tagzeit (06.00 Uhr bis 22.00 Uhr) (Tabelle 5)

Energieäquivalenter Dauerschallpegel in dB(A) für die Tagzeit (06.00 Uhr bis 22.00 Uhr) nach dem novellierten Fluglärmschutzgesetz vom Juni 2007 Leq(3)

September	M1	M2	M3	M4	M5	M6	M7	M8
2022								Denken-
								dorf
01.	54	55	56	59	47	57	42	54
02.	55	56	57	58	48	57	43	55
03.	53	55	55	61	53	56	52	54
04.	50	52	51	62	56	57	54	51
05.	55	54	55	60	51	57	49	53
06.	50	50	49	59	55	56	53	49
07.	48	50	49	61	55	57	54	49
08.	47	50	47	59	56	56	55	48
09.	49	51	47	60	57	57	56	49
10.	49	52	48	60	57	57	56	50
11.	50	52	52	62	56	58	55	51
12.	54	55	55	60	50	56	48	54
13.	52	54	55	60	50	56	47	53
14.	47	50	44	59	56	56	55	48
15.	46	49	44	61	56	56	55	47
16.	47	49	49	61	57	57	56	49
17.	45	49	45	60	57	57	55	48
18.	47	50	45	60	57	57	56	48
19.	46	48	45	60	57	57	55	47
20.	45	49	45	60	56	57	55	48
21.	54	54	56	60	52	58	49	54
22.	54	54	56	59	47	56	46	54
23.	*	49	48	61	56	57	55	48
24.	49	49	48	62	56	57	54	49
25.	46	50	48	61	56	57	55	49
26.	48	50	47	60	56	56	55	49
27.	46	50	46	60	56	55	56	49
28.	47	49	46	61	57	56	55	48
29.	53	53	54	62	53	57	51	53
30.	55	56	57	61	48	57	44	55
MM	49.7	51,3	49,9	60,1	54,1	56,7	52,3	50,4

MM = arithmetischer Monatsmittelwert

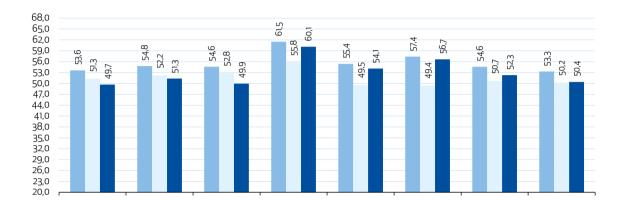
^{* =} Störung Messstelle / Kein Lärmereignis

Fluglärmdauerschallpegel Leq Nacht nach dem novellierten Fluglärmschutzgesetz vom Juni 2007 während der Nachtzeit (22.00 Uhr bis 06.00 Uhr) (Tabelle 6)

Energieäquivalenter Dauerschallpegel in dB(A) für die Nachtzeit (22.00 Uhr bis 06.00 Uhr) nach dem novellierten Fluglärmschutzgesetz vom Juni 2007 Leq(3)

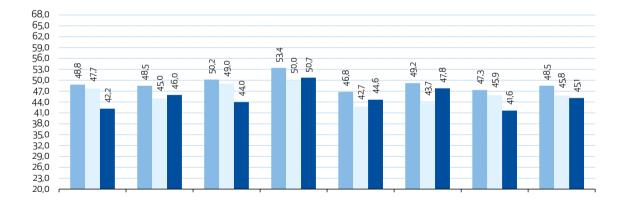
September								
2022								
01.	47	47	49	52	41	51	38	46
02.	48	48	50	51	42	51	36	47
03.	39	45	41	49	45	45	43	44
04.	28	41	30	49	45	45	43	38
05.	44	46	45	53	46	48	45	45
06.	46	47	48	51	41	51	27	46
07.	47	47	49	54	41	52	28	47
08.	41	45	41	51	48	47	47	44
09.	45	48	46	52	48	47	48	47
10.	40	46	41	46	46	45	46	45
11.	35	43	36	50	47	48	46	41
12.	46	47	48	53	41	51	42	46
13.	47	49	48	51	40	49	*	47
14.	44	47	45	50	46	45	47	46
15.	43	47	46	52	45	44	44	47
16.	41	46	44	51	48	46	47	45
17.	41	46	41	44	42	42	40	45
18.	40	47	42	47	45	46	44	45
19.	44	45	44	52	48	47	48	45
20.	41	46	44	53	47	48	45	45
21.	47	46	48	51	41	51	28	46
22.	*	47	48	50	41	51	32	47
23.	40	47	49	55	43	52	28	47
24.	36	43	36	42	42	43	40	42
25.	37	41	38	50	47	51	44	41
26.	42	47	43	52	48	45	49	46
27.	44	47	44	52	49	47	49	45
28.	41	45	42	51	49	48	48	44
29.	49	49	51	55	40	51	38	49
30.	42	47	44	51	48	47	48	46
MM	42,2	46,0	44,0	50,7	44,6	47,8	41,6	45,1

MM = arithmetischer Monatsmittelwert


^{* =} Störung Messstelle / Kein Lärmereignis

5. Gesamt-, Umgebungs- und Flugzeuggeräusche an den Standorten der Außenmessstellen

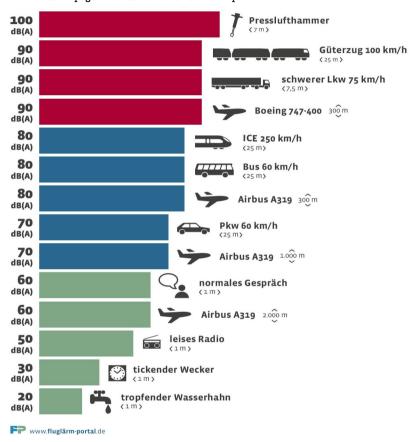
Die folgende Tabelle zeigt, wie intensiv die Flugzeuggeräusche im Vergleich zu den sonstigen Geräuschen in der Umgebung der Außenmessstellen sind. Da die Mikrofone alle Geräusche am Standort erfassen, ist dies problemlos möglich. Dargestellt wird hier der jeweilige Dauerschallpegel, jeweils für die Tagzeit (6.00 bis 22.00 Uhr) und für den Nachtzeitraum (22.00 bis 6.00 Uhr).


dB(A) Leq(3) Monatswert Tag (6.00 bis 22.00 Uhr)

Sep	tember	M1	M2	M3	M4	M5	M6	M7	M8
	2022	Scharn-	Berkheim	Neu-	Bern-	Stetten	Steinen-	Echter-	Denken-
		hausen		hausen	hausen		bronn	dingen	dorf

dB(A) Leq(3) Monatswert

Nacht (22.00 bis 6.00 Uhr)

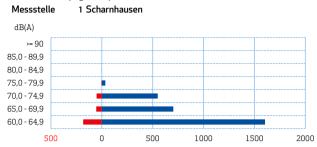

- Gesamtgeräusche <u>inkl.</u> Flugzeuggeräusche
- Umgebungsgeräusche ohne Flugzeuggeräusche
- $Flugzeugger \"{a}usche \ ohne \ Umgebungsger \"{a}usche$

6. Häufigkeitsverteilung der luftverkehrsbedingten Maximalpegel an den Außenmessstellen

Der Maximalpegel (Lmax) kennzeichnet den höchsten Schalldruck eines einzelnen Fluglärmereignisses. Beim Vorbeiflug eines Flugzeuges steigt der Schalldruckpegel zunächst langsam an, bis die Maschine den geringsten Abstand zum Beobachter hat. Der Schalldruckpegel erreicht dann seinen Höchstwert – den so genannten Maximalpegel – und fällt danach wieder ab. Der Maximalschallpegel wird nicht berechnet, sondern entspricht dem Spitzenwert, der bei der Messung eines Schallereignisses vom Schallpegelmesser angezeigt wird. Zum Beurteilen der Störwirkung von Fluglärm wird häufig ergänzend zum Dauerschallpegel die tagesdurchschnittliche Anzahl der Maximalpegel herangezogen.

In der folgenden Grafik sind typische Maximalschallpegel unterschiedlicher Geräuschquellen aufgelistet. Die genannten Werte lassen sich unmittelbar mit den Maximalschallpegeln vergleichen, die an den Außenmessstellen der Fluglärmmessanlage registriert werden.

Maximalschallpegel unterschiedlicher Geräuschquellen



6.1 Schallpegelwerte an den Außenmessstellen

Die folgenden acht Grafiken verdeutlichen, wie häufig innerhalb der Tag- und Nachtzeiträume des betrachteten Monats an der jeweiligen Messstelle welche Überflugmaximalschallpegel gemessen wurden und ob dies durch einen Start oder Landung hervorgerufen wurde. Ein Vergleich mit den in der Grafik 2 genannten Maximalschallpegeln hilft bei der Einordnung der an den Außenmessstellen registrierten Pegelwerte. Die Auswertungen zeigen, dass nicht alle Flugbewegungen hohe Schallpegel verursachen. Bei vielen Vorbei- und Überflügen liegen die Schallpegelspitzen unterhalb des Schwellenwertes der Fluglärmmessanlage. In diesen Fällen gehen die Flugzeuggeräusche im allgemeinen Umgebungsgeräusch unter und können messtechnisch nicht erfasst werden.

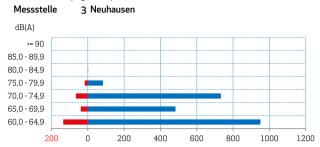
Maximalschallpegel - September 2022

Anzahl der korrelierten Lärmereignisse (Tag+Nacht) mit Lmax > 60 dB(A):	3187
Gesamtzahl der Flugspuren im 2 km Umkreis der Messstelle:	4172

Klasse		Tag	
[dB(A)]			
>= 90	0	0	0
85,0 - 89,9	0	0	0
80,0 - 84,9	1	1	0
75,0 - 79,9	35	33	2
70,0 - 74,9	550	538	12
65,0 - 69,9	702	653	49
60,0 - 64,9	1.604	475	1.129
Summe	2.892	1.700	1.192

Klasse [dB(A)]	Gesamt	Nacht Starts	Landungen
[00(1/)]	desanie	2(0)(3	Landangen
>= 90	0	0	0
85,0 - 89,9	0	0	0
80,0 - 84,9	0	0	0
75,0 - 79,9	5	5	0
70,0 - 74,9	52	51	1
65,0 - 69,9	55	54	1
60,0 - 64,9	183	24	159
Summe	295	134	161

Maximalschallpegel - September 2022 Messstelle 2 Berkheim


1-103331011	. 21	CIRICUII				
dB(A)						
>= 90	[
85,0 - 89,9						
80,0 - 84,9						
75,0 - 79,9		-				
70,0 - 74,9						
65,0 - 69,9	ı					
60,0 - 64,9						
50	00	0	50	00	1000	1500

Anzahl der korrelierten Lärmereignisse (Tag+Nacht) mit Lmax > 63 dB(A): 3255 Gesamtzahl der Flugspuren im 2 km Umkreis der Messstelle: 4161

Klasse	Tag				
[dB(A)]			Landungen		
>= 90	0	0	0		
85,0 - 89,9	0	0	0		
80,0 - 84,9	2	2	0		
75,0 - 79,9	72	71	1		
70,0 - 74,9	745	715	30		
65,0 - 69,9	1.257	302	955		
60,0 - 64,9	779	58	721		
Summe	2.855	1.148	1.707		

Klasse		Nacht	
[dB(A)]			
>= 90	0	0	0
85,0 - 89,9	0	0	0
80,0 - 84,9	0	0	0
75,0 - 79,9	12	12	0
70,0 - 74,9	62	60	2
65,0 - 69,9	187	32	155
60,0 - 64,9	139	1	138
Summe	400	105	295

Maximalschallpegel - September 2022 Messstelle 3 Neuhausen

Anzahl der korrelierten Lärmereignisse (Tag+Nacht) mit Lmax > 62 dB(A):	2510
Gesamtzahl der Flugspuren im 2 km Umkreis der Messstelle:	4177

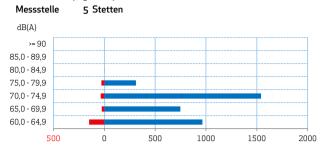
Klasse	Tag				
[dB(A)]					
>= 90	0	0	0		
85,0 - 89,9	0	0	0		
80,0 - 84,9	2	2	0		
75,0 - 79,9	84	79	5		
70,0 - 74,9	733	727	6		
65,0 - 69,9	483	331	152		
60,0 - 64,9	951	64	887		
Summe	2.253	1.203	1.050		

Klasse [dB(A)]	Gesamt	Nacht Starts	Landungen
>= 90	0	0	0
85,0 - 89,9	0	0	0
80,0 - 84,9	0	0	0
75,0 - 79,9	17	17	0
70,0 - 74,9	66	65	1
65,0 - 69,9	39	22	17
60,0 - 64,9	135	1	134
Summe	257	105	152

Maximalschallpegel - September 2022

Messstel	le 4 E	Bernhauser	1			
dB(A)						
>= 90						
85,0 - 89,9						
80,0 - 84,9						
75,0 - 79,9	_					
70,0 - 74,9						
65,0 - 69,9						
60,0 - 64,9						
50	00 (50	00 10	00 15	00 20	00 2500

Anzahl der korrelierten Lärmereignisse (Tag+Nacht) mit Lmax > 65 dB(A): 5249


Gesamtzahl der Flugspuren im 2 km Umkreis der Messstelle: 8095

Klasse	Tag				
[dB(A)]					
>= 90	0	0	0		
85,0 - 89,9	21	9	12		
80,0 - 84,9	712	579	133		
75,0 - 79,9	2.233	2.086	147		
70,0 - 74,9	1.195	940	255		
65,0 - 69,9	644	225	419		
60,0 - 64,9					
Summe	4.805	3.839	966		

Klasse		Nacht	
[dB(A)]			
>= 90	0	0	0
85,0 - 89,9	1	1	0
80,0 - 84,9	43	35	8
75,0 - 79,9	117	97	20
70,0 - 74,9	107	52	55
65,0 - 69,9	176	11	165
60,0 - 64,9			
Summe	444	196	248

Maximalschallpegel - September 2022

Anzahl der korrelierten Lärmereignisse (Tag+Nacht) mit Lmax > 60 dB(A):	3807
Gesamtzahl der Flugspuren im 2 km Umkreis der Messstelle:	3959

Klasse		Tag	
[dB(A)]			
>= 90	0	0	0
85,0 - 89,9	0	0	0
80,0 - 84,9	1	1	0
75,0 - 79,9	311	310	1
70,0 - 74,9	1.542	1.531	11
65,0 - 69,9	748	564	184
60,0 - 64,9	965	204	761
Summe	3.567	2.610	957

Klasse [dB(A)]	Gesamt	Nacht Starts	Landungen
>= 90	0	0	0
85,0 - 89,9	0	0	0
80,0 - 84,9	0	0	0
75,0 - 79,9	29	29	0
70,0 - 74,9	36	36	0
65,0 - 69,9	25	20	5
60,0 - 64,9	150	3	147
Summe	240	88	152

Maximalschallpegel - September 2022 Messstelle 6 Steinenbronn

dB(A)								
>= 90								
85,0 - 89,9								
80,0 - 84,9								
75,0 - 79,9								
70,0 - 74,9	1							
65,0 - 69,9								
60,0 - 64,9								
5	00	Ó	500	10	00 1	500	2000	2500

Anzahl der korrelierten Lärmereignisse (Tag+Nacht) mit Lmax > 60 dB(A): 3896
Gesamtzahl der Flugspuren im 2 km Umkreis der Messstelle: 3930

Klasse	Tag				
[dB(A)]					
>= 90	0	0	0		
85,0 - 89,9	0	0	0		
80,0 - 84,9	6	3	3		
75,0 - 79,9	755	525	230		
70,0 - 74,9	2.063	1.349	714		
65,0 - 69,9	583	452	131		
60,0 - 64,9	242	203	39		
Summe	3.649	2.532	1.117		

Klasse	Nacht					
[dB(A)]						
>= 90	0	0	0			
85,0 - 89,9	1	1	0			
80,0 - 84,9	0	0	0			
75,0 - 79,9	32	15	17			
70,0 - 74,9	178	43	135			
65,0 - 69,9	33	26	7			
60,0 - 64,9	3	3	0			
Summe	247	88	159			

Maximalschallpegel - September 2022 Messstelle 7 Echterdingen

Anzahl der korrelierten Lärmereignisse (Tag+Nacht) mit Lmax > 60 dB(A):	3085
Gesamtzahl der Flugspuren im 2 km Umkreis der Messstelle:	3952

Klasse	Tag				
[dB(A)]					
>= 90	0	0	0		
85,0 - 89,9	0	0	0		
80,0 - 84,9	6	5	1		
75,0 - 79,9	60	58	2		
70,0 - 74,9	1.314	1.309	5		
65,0 - 69,9	967	947	20		
60,0 - 64,9	615	204	411		
Summe	2.962	2.523	439		

Klasse [dB(A)]	Nacht Gesamt Starts Landungen					
>= 90	0	0	0			
85,0 - 89,9	0	0	0			
80,0 - 84,9	0	0	0			
75,0 - 79,9	18	17	1			
70,0 - 74,9	50	50	0			
65,0 - 69,9	13	13	0			
60,0 - 64,9	42	4	38			
Summe	123	84	39			

Maximalschallpegel - September 2022 Messstelle 8 Denkendorf

dB(A)								
>= 90				1				
85,0 - 89,9								
80,0 - 84,9								
75,0 - 79,9		•						
70,0 - 74,9		_						
65,0 - 69,9								
60,0 - 64,9								
5	00	0	5	00	1000	15	00	2000

Anzahl der korrelierten Lärmereignisse (Tag+Nacht) mit Lmax > 60 dB(A): 3673

Gesamtzahl der Flugspuren im 2 km Umkreis der Messstelle: 4163

Klasse	Tag					
[dB(A)]						
>= 90	0	0	0			
85,0 - 89,9	0	0	0			
80,0 - 84,9	0	0	0			
75,0 - 79,9	29	28	1			
70,0 - 74,9	636	623	13			
65,0 - 69,9	863	426	437			
60,0 - 64,9	1.699	133	1.566			
Summe	3.227	1.210	2.017			

Klasse	Nacht				
[dB(A)]					
>= 90	0	0	0		
85,0 - 89,9	0	0	0		
80,0 - 84,9	0	0	0		
75,0 - 79,9	6	6	0		
70,0 - 74,9	60	59	1		
65,0 - 69,9	93	37	56		
60,0 - 64,9	287	1	286		
Summe	446	103	343		

6.2 Höchste Fluglärmmaximalschallpegel an den Außenmessstellen

Verschiedene Flugzeugtypen sind unterschiedlich laut. Grund zu Beschwerden bieten vor allem Flugbewegungen, die hohe Schallpegel verursachen. Weniger laute Überflugereignisse werden dagegen vielfach gar nicht wahrgenommen. Die folgenden Tabellen zeigen, die Flugbewegungen, die an den verschiedenen Außenmessstellen innerhalb eines Monats die 10 höchsten und damit besonders störende Schallpegel ausgelöst haben. Durch die Identifizierung auffällig lauter Überflugereignisse wird deutlich, welche Flugzeugtypen und Verkehrsarten Anlass für Lärmbeschwerden liefern.

M1 Scharnhausen

Nr.	Datum	Uhrzeit	Maximalpegel [dB(A)]	Flug- bewegung	Flug- zeugtyp	Verkehrsart
1	05.09.2022	07:15:55	80,0	Start	B739	Gewerblicher Verkehr
2	05.09.2022	11:54:01	78,8	Start	B739	Gewerblicher Verkehr
3	06.09.2022	06:23:26	78,7	Start	B738	Gewerblicher Verkehr
4	26.09.2022	18:49:04	77.9	Start	B734	Gewerblicher Verkehr
5	05.09.2022	07:04:29	77.9	Start	B738	Gewerblicher Verkehr
6	03.09.2022	13:16:12	77,8	Start	MD82	Gewerblicher Verkehr
7	10.09.2022	20:12:49	77,4	Start	B734	Gewerblicher Verkehr
8	29.09.2022	22:42:15	77,1	Start	A306	Gewerblicher Verkehr
9	10.09.2022	14:53:15	77,1	Start	MD82	Gewerblicher Verkehr
10	06.09.2022	08:06:06	77,0	Start	B738	Gewerblicher Verkehr

M₂ Berkheim

Nr.	Datum	Uhrzeit	Maximalpegel [dB(A)]	Flug- bewegung	Flug- zeugtyp	Verkehrsart
1	10.09.2022	13:19:57	81,2	Start	B734	Gewerblicher Verkehr
2	10.09.2022	21:20:11	80,8	Start	B734	Gewerblicher Verkehr
3	02.09.2022	11:58:14	79,7	Start	C301	Militär
4	16.09.2022	19:03:50	78,9	Start	B734	Gewerblicher Verkehr
5	10.09.2022	20:13:35	78,8	Start	B734	Gewerblicher Verkehr
6	26.09.2022	18:49:50	78,4	Start	B734	Gewerblicher Verkehr
7	03.09.2022	19:09:48	77,8	Start	B734	Gewerblicher Verkehr
8	29.09.2022	17:17:04	77.7	Start	B738	Gewerblicher Verkehr
9	29.09.2022	19:34:38	77,5	Start	A332	Gewerblicher Verkehr
10	21.09.2022	15:23:52	77,5	Start	B734	Gewerblicher Verkehr

M3 Neuhausen

Nr.	Datum	Uhrzeit	Maximalpegel [dB(A)]	Flug- bewegung	Flug- zeugtyp	Verkehrsart
1	23.09.2022	20:13:33	82,9	Start	B734	Gewerblicher Verkehr
2	03.09.2022	13:16:24	80,1	Start	MD82	Gewerblicher Verkehr
3	10.09.2022	20:12:58	79,5	Start	B734	Gewerblicher Verkehr
4	10.09.2022	21:19:31	78,9	Start	B734	Gewerblicher Verkehr
5	16.09.2022	10:53:00	78,8	Landung	B738	Gewerblicher Verkehr
6	29.09.2022	20:12:55	78,3	Start	B734	Gewerblicher Verkehr
7	03.09.2022	14:19:51	78,3	Start	B738	Gewerblicher Verkehr
8	05.09.2022	16:07:06	78,1	Start	B739	Gewerblicher Verkehr
9	16.09.2022	19:03:09	78,1	Start	B734	Gewerblicher Verkehr
10	15.09.2022	22:36:13	78,0	Start	A306	Gewerblicher Verkehr

M4 Bernhausen

Nr.	Datum	Uhrzeit	Maximalpegel [dB(A)]	Flug- bewegung	Flug- zeugtyp	Verkehrsart
1	24.09.2022	16:31:56	88,9	Start	A321	Gewerblicher Verkehr
2	29.09.2022	14:08:04	88,0	Landung	GLF6	Gewerblicher Verkehr
3	24.09.2022	16:40:06	88,0	Start	A321	Gewerblicher Verkehr
4	03.09.2022	21:07:45	86,8	Landung	B738	Gewerblicher Verkehr
5	28.09.2022	06:47:47	86,3	Start	A320	Gewerblicher Verkehr
6	05.09.2022	08:08:46	86,3	Landung	B734	Gewerblicher Verkehr
7	12.09.2022	06:37:32	85,9	Landung	B738	Gewerblicher Verkehr
8	15.09.2022	13:08:10	85,9	Landung	B738	Gewerblicher Verkehr
9	24.09.2022	13:14:40	85,9	Start	A320	Gewerblicher Verkehr
10	07.09.2022	06:06:48	85,8	Landung	B738	Gewerblicher Verkehr

M5 Stetten

	_					
Nr.	Datum		Maximalpegel [dB(A)]			
1	11.09.2022	15:07:01	81,6	Start	MD82	Gewerblicher Verkehr
2	25.09.2022	22:06:06	79.7	Start	C17	Militär
3	04.09.2022	15:07:55	79,5	Start	MD82	Gewerblicher Verkehr
4	28.09.2022	06:38:10	79,5	Start	B738	Gewerblicher Verkehr
5	10.09.2022	20:57:28	79,1	Start	A333	Gewerblicher Verkehr
6	28.09.2022	14:53:09	78,9	Start	B738	Gewerblicher Verkehr
7	03.09.2022	15:50:53	78,8	Start	MD82	Gewerblicher Verkehr
8	17.09.2022	18:33:39	78,7	Start	B734	Gewerblicher Verkehr
9	26.09.2022	12:13:49	78,6	Start	B738	Gewerblicher Verkehr
10	09.09.2022	20:37:48	78,5	Start	B734	Gewerblicher Verkehr

M6 Steinenbronn

1410 Stellielibre	21111					
Nr.	Datum		Maximalpegel [dB(A)]			
1	25.09.2022	22:06:42	85,5	Start	C17	Militär
2	05.09.2022	08:11:17	81,5	Landung	BCS3	Gewerblicher Verkehr
3	03.09.2022	15:51:33	80,6	Start	MD82	Gewerblicher Verkehr
4	01.09.2022	19:03:25	80,2	Landung	A333	Gewerblicher Verkehr
5	30.09.2022	08:33:50	80,0	Landung	B734	Gewerblicher Verkehr
6	10.09.2022	15:38:32	80,0	Start	B734	Gewerblicher Verkehr
7	21.09.2022	06:28:43	80,0	Start	B738	Gewerblicher Verkehr
8	04.09.2022	14:35:06	79,7	Start	B738	Gewerblicher Verkehr
9	03.09.2022	20:39:46	79,6	Start	A333	Gewerblicher Verkehr
10	25.09.2022	15:14:20	79,5	Start	B734	Gewerblicher Verkehr

M7 Echterdingen

Nr.	Datum	Uhrzeit	Maximalpegel [dB(A)]	Flug- bewegung	Flug- zeugtyp	Verkehrsart
1	03.09.2022	15:50:49	83,9	Start	MD82	Gewerblicher Verkehr
2	04.09.2022	15:07:45	82,2	Start	MD82	Gewerblicher Verkehr
3	11.09.2022	15:07:00	82,0	Start	MD82	Gewerblicher Verkehr
4	10.09.2022	14:55:03	81,5	Start	MD82	Gewerblicher Verkehr
5	10.09.2022	18:31:48	80,5	Start	MD82	Gewerblicher Verkehr
6	22.09.2022	19:50:04	80,0	Landung	BE20	Gewerblicher Verkehr
7	09.09.2022	16:38:29	79,9	Start	B734	Gewerblicher Verkehr
8	23.09.2022	14:42:05	78,6	Start	B738	Gewerblicher Verkehr
9	16.09.2022	13:40:12	78,6	Start	C560	Militär
10	26.09.2022	22:27:41	78,3	Start	B738	Gewerblicher Verkehr

/15

M8 Denkendorf

Nr.	Datum	Uhrzeit	Maximalpegel [dB(A)]	Flug- bewegung	Flug- zeugtyp	Verkehrsart
1	10.09.2022	20:13:29	79,0	Start	B734	Gewerblicher Verkehr
2	26.09.2022	18:49:45	78,6	Start	B734	Gewerblicher Verkehr
3	03.09.2022	13:17:05	78,2	Start	MD82	Gewerblicher Verkehr
4	25.09.2022	18:44:07	78,0	Start	B734	Gewerblicher Verkehr
5	14.09.2022	10:41:21	77,1	Start	B734	Gewerblicher Verkehr
6	16.09.2022	19:03:45	76,9	Start	B734	Gewerblicher Verkehr
7	10.09.2022	13:19:50	76,8	Start	B734	Gewerblicher Verkehr
8	23.09.2022	20:14:12	76,8	Start	B734	Gewerblicher Verkehr
9	09.09.2022	22:28:26	76,5	Start	A306	Gewerblicher Verkehr
10	15.09.2022	22:36:49	76,4	Start	A306	Gewerblicher Verkehr

A306 Airbus A300-600 171,700 44,84 Strahltriebflugzeug A320 Airbus A320 73,500 35,8 Strahltriebflugzeug A321 Airbus A321 89,000 35,8 Strahltriebflugzeug A332 Airbus A330-200 60,3 Strahltriebflugzeug A333 Airbus A330-300 230,000 60,3 Strahltriebflugzeug B734 Boeing 737-400 62,820 28,9 Strahltriebflugzeug B738 Boeing 737-800 70,530 34,3 Strahltriebflugzeug BCS3 Bombardier BD-500 CSeries CS300 67,585 35,1 Strahltriebflugzeug BE20 Beech King Air 200 5,670 16,6 Propellerflugzeug C17 C-17 Globemaster 3 265,350 51,8 Strahltriebflugzeug C30J Lockheed C-130/L-100/L-182/L-282/L-382 Hercules 70,310 40,4 Propellerflugzeug C560 Cessna 560 Citation 5 7,200 13,8 Strahltriebflugzeug			MTOM	Spannweite	
A306 Airbus A300-600 171.700 44,84 Strahltriebflugzeug A320 Airbus A320 73.500 35,8 Strahltriebflugzeug A321 Airbus A321 89.000 35,8 Strahltriebflugzeug A332 Airbus A330-200 60,3 Strahltriebflugzeug A333 Airbus A330-300 230.000 60,3 Strahltriebflugzeug B734 Boeing 737-400 62.820 28,9 Strahltriebflugzeug B738 Boeing 737-800 70.530 34,3 Strahltriebflugzeug BCS3 Bombardier BD-500 CSeries CS300 67,585 35,1 Strahltriebflugzeug BE20 Beech King Air 200 5,670 16,6 Propellerflugzeug C17 C-17 Globemaster 3 265,350 51,8 Strahltriebflugzeug C30J Lockheed C-130/L-100/L-182/L-282/L-382 Hercules 70,310 40,4 Propellerflugzeug C560 Cessna 560 Citation 5 7,200 13,8 Strahltriebflugzeug GLF6 Gulfstream G650 45,200 30,36 Strahltriebflugzeug	ICAO-Code	Flugzeugtyp			Antriebsart
A320 Airbus A320 73,500 35,8 Strahltriebflugzeug A321 Airbus A321 89,000 35,8 Strahltriebflugzeug A332 Airbus A330-200 230,000 60,3 Strahltriebflugzeug A333 Airbus A330-300 230,000 60,3 Strahltriebflugzeug B734 Boeing 737-400 62,820 28,9 Strahltriebflugzeug B738 Boeing 737-800 70,530 34,3 Strahltriebflugzeug B739 Boeing 737-900 79,015 34,3 Strahltriebflugzeug BCS3 Bombardier BD-500 CSeries CS300 67,585 35,1 Strahltriebflugzeug BE20 Beech King Air 200 5,670 16,6 Propellerflugzeug C17 C-17 Globemaster 3 265,350 51,8 Strahltriebflugzeug C30J Lockheed C-130/L-100/L-182/L-282/L-382 Hercules 70,310 40,4 Propellerflugzeug C560 Cessna 560 Citation 5 7,200 13,8 Strahltriebflugzeug GLF6 Gulfstream G650 45,200 30,36 Strahltriebflugzeug	A306	Airbus A300-600			Strahltriebflugzeug
A321 Airbus A321 89,000 35,8 Strahltriebflugzeug A332 Airbus A330-200 230,000 60,3 Strahltriebflugzeug A333 Airbus A330-300 230,000 60,3 Strahltriebflugzeug B734 Boeing 737-400 62,820 28,9 Strahltriebflugzeug B738 Boeing 737-800 70,530 34,32 Strahltriebflugzeug B739 Boeing 737-900 79,015 34,3 Strahltriebflugzeug BCS3 Bombardier BD-500 CSeries CS300 67,585 35,1 Strahltriebflugzeug BE20 Beech King Air 200 5,670 16,6 Propellerflugzeug C17 C-17 Globemaster 3 265,350 51,8 Strahltriebflugzeug C30J Lockheed C-130/L-100/L-182/L-282/L-382 Hercules 70,310 40,4 Propellerflugzeug C560 Cessna 560 Citation 5 7,200 13,8 Strahltriebflugzeug GLF6 Gulfstream G650 45,200 30,36 Strahltriebflugzeug	A320				
A332 Airbus A330-200 230.000 60,3 Strahltriebflugzeug A333 Airbus A330-300 230.000 60,3 Strahltriebflugzeug B734 Boeing 737-400 62.820 28,9 Strahltriebflugzeug B738 Boeing 737-800 70.530 34,32 Strahltriebflugzeug B739 Boeing 737-900 79.015 34,3 Strahltriebflugzeug BCS3 Bombardier BD-500 CSeries CS300 67.585 35,1 Strahltriebflugzeug BE20 Beech King Air 200 5.670 16,6 Propellerflugzeug C17 C-17 Globemaster 3 265.350 51,8 Strahltriebflugzeug C301 Lockheed C-130/L-100/L-182/L-282/L-382 Hercules 70.310 40,4 Propellerflugzeug C560 Cessna 560 Citation 5 7.200 13,8 Strahltriebflugzeug GLF6 Gulfstream G650 45.200 30,36 Strahltriebflugzeug	A321				
A333 Airbus A330-300 230.000 60,3 Strahltriebflugzeug B734 Boeing 737-400 62.820 28,9 Strahltriebflugzeug B738 Boeing 737-800 70.530 34,32 Strahltriebflugzeug B739 Boeing 737-900 79.015 34,3 Strahltriebflugzeug BCS3 Bombardier BD-500 CSeries CS300 67.585 35,1 Strahltriebflugzeug BE20 Beech King Air 200 5.670 16,6 Propellerflugzeug C17 C-17 Globemaster 3 265.350 51,8 Strahltriebflugzeug C301 Lockheed C-130/L-100/L-182/L-282/L-382 Hercules 70.310 40,4 Propellerflugzeug C560 Cessna 560 Citation 5 7.200 13,8 Strahltriebflugzeug GLF6 Gulfstream G650 45.200 30,36 Strahltriebflugzeug	A332				
B734 Boeing 737-400 62.820 28.9 Strahltriebflugzeug B738 Boeing 737-800 70.530 34,32 Strahltriebflugzeug B739 Boeing 737-900 79.015 34,3 Strahltriebflugzeug BCS3 Bombardier BD-500 CSeries CS300 67.585 35,1 Strahltriebflugzeug BE20 Beech King Air 200 5.670 16,6 Propellerflugzeug C17 C-17 Globemaster 3 265.350 51,8 Strahltriebflugzeug C30J Lockheed C-130/L-100/L-182/L-282/L-382 Hercules 70.310 40.4 Propellerflugzeug C560 Cessna 560 Citation 5 7.200 13,8 Strahltriebflugzeug GLF6 Gulfstream G650 45.200 30,36 Strahltriebflugzeug	A333				
B738 Boeing 737-800 70.530 34,32 Strahltriebflugzeug B739 Boeing 737-900 79.015 34,3 Strahltriebflugzeug BCS3 Bombardier BD-500 CSeries CS300 67.585 35,1 Strahltriebflugzeug BE20 Beech King Air 200 5.670 16,6 Propellerflugzeug C17 C-17 Globemaster 3 265.350 51,8 Strahltriebflugzeug C30J Lockheed C-130/L-100/L-182/L-282/L-382 Hercules 70.310 40,4 Propellerflugzeug C560 Cessna 560 Citation 5 7.200 13,8 Strahltriebflugzeug GLF6 Gulfstream G650 45.200 30,36 Strahltriebflugzeug	B734				
B739 Boeing 737-900 79.015 34,3 Strahltriebflugzeug BCS3 Bombardier BD-500 CSeries CS300 67.585 35,1 Strahltriebflugzeug BE20 Beech King Air 200 5.670 16,6 Propellerflugzeug C17 C-17 Globemaster 3 265.350 51,8 Strahltriebflugzeug C30J Lockheed C-130/L-100/L-182/L-282/L-382 Hercules 70.310 40,4 Propellerflugzeug C560 Cessna 560 Citation 5 7.200 13,8 Strahltriebflugzeug GLF6 Gulfstream G650 45.200 30,36 Strahltriebflugzeug	B738		70.530		
BCS3 Bombardier BD-500 CSeries CS300 67:585 35:1 Strahltriebflugzeug BE20 Beech King Air 200 5.670 16,6 Propellerflugzeug C17 C-17 Globemaster 3 265:350 51,8 Strahltriebflugzeug C30J Lockheed C-130/L-100/L-182/L-282/L-382 Hercules 70:310 40,4 Propellerflugzeug C560 Cessna 560 Citation 5 7.200 13,8 Strahltriebflugzeug GLF6 Gulfstream G650 45:200 30,36 Strahltriebflugzeug	B739		79.015		Strahltriebflugzeug
C17 C-17 Globemaster 3 265.350 51,8 Strahltriebflugzeug C30J Lockheed C-130/L-100/L-182/L-282/L-382 Hercules 70.310 40,4 Propellerflugzeug C560 Cessna 560 Citation 5 7.200 13,8 Strahltriebflugzeug GLF6 Gulfstream G650 45.200 30,36 Strahltriebflugzeug	BCS3				
C30J Lockheed C-130/L-100/L-182/L-282/L-382 Hercules 70.310 40,4 Propellerflugzeug C560 Cessna 560 Citation 5 7.200 13,8 Strahltriebflugzeug GLF6 Gulfstream G650 45.200 30,36 Strahltriebflugzeug	BE20	Beech King Air 200	5.670	16,6	Propellerflugzeug
C560Cessna 560 Citation 57.20013,8StrahltriebflugzeugGLF6Gulfstream G65045.20030,36Strahltriebflugzeug	C17	C-17 Globemaster 3	265.350	51,8	Strahltriebflugzeug
GLF6 Gulfstream G650 45.200 30,36 Strahltriebflugzeug	C30J	Lockheed C-130/L-100/L-182/L-282/L-382 Hercules	70.310	40,4	Propellerflugzeug
	C560	Cessna 560 Citation 5	7.200	13,8	Strahltriebflugzeug
MD82 McDonnell Douglas MD-82 67.812 32.78 Strahltriebflugzeug	GLF6	Gulfstream G650	45.200	30,36	
	MD82	McDonnell Douglas MD-82	67.812	32,78	Strahltriebflugzeug